Overcoming Nanoscale Friction Barriers in Transition Metal Dichalcogenides
نویسندگان
چکیده
We study the atomic contributions to the nanoscale friction in layered MX2 (M = Mo, W; X = S, Se, Te) transition metal dichalcogenides by combining ab initio techniques with group theoretical analysis. Starting from stable atomic configurations, we propose a computational method, named Normal-Modes Transition Approximation (NMTA), to individuate possible sliding paths from only the analysis of the phonon modes of the stable geometry. The method provides a way to decompose the atomic displacements realizing the layer sliding in terms of phonon modes of the stable structure, so as to guide the selection and tuning of specific atomic motions promoting MX2 sheets gliding, and to adjust the corresponding energy barrier. The present results show that main contributions to the nanoscale friction are due to few low frequency phonon modes, corresponding to rigid shifts of MX2 layers. We also provide further evidences that a previously reported Ti-doped MoS2 phase is a promising candidate as new material with enhanced tribologic properties. The NMTA approach can be exploited to tune the energetic and the structural features of specific phonon modes, and, thanks to its general formulation, can also be applied to any solid state system, irrespective of the chemical composition and structural topology.
منابع مشابه
Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.
Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing qua...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملOn the lubricity of transition metal dichalcogenides: an ab initio study.
Owing to specific characteristics engendered by their lamellar structures, transition metal dichalcogenides are posited as being some of the best dry lubricants available. Herein, we report a density functional investigation into the sliding properties and associated phenomena of these materials. Calculated potential energy and charge transfer profiles are used to highlight the dependence of sh...
متن کاملA gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.
Two-dimensional layered materials, such as transition metal dichalcogenides (TMDCs), are promising materials for future electronics owing to their unique electronic properties. With the presence of a band gap, atomically thin gate defined quantum dots (QDs) can be achieved on TMDCs. Herein, standard semiconductor fabrication techniques are used to demonstrate quantum confined structures on WSe2...
متن کاملOptoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides
We review the application of atomically thin transition metal dichalcogenides in optoelectronic devices. First, a brief overview of the optical properties of two-dimensional layered semiconductors is given and the role of excitons and valley dichroism in these materials are discussed. The following sections review and compare different concepts of photodetecting and light emitting devices, nano...
متن کامل